Parametric and semiparametric model-based estimates of the finite population mean for two-stage cluster samples with item nonresponse.

نویسندگان

  • Ying Yuan
  • Roderick J A Little
چکیده

This article concerns item nonresponse adjustment for two-stage cluster samples. Specifically, we focus on two types of nonignorable nonresponse: nonresponse depending on covariates and underlying cluster characteristics, and depending on covariates and the missing outcome. In these circumstances, standard weighting and imputation adjustments are liable to be biased. To obtain consistent estimates, we extend the standard random-effects model by modeling these two types of missing data mechanism. We also propose semiparametric approaches based on fitting a spline on the propensity score, to weaken assumptions about the relationship between the outcome and covariates. These new methods are compared with existing approaches by simulation. The National Health and Nutrition Examination Survey data are used to illustrate these approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Likelihood Estimation for Samples with Nonignorable Nonresponse

Nonresponse is very common in survey sampling. Nonignorable nonresponse, a response mechanism in which the response probability of a survey variable Y depends directly on the value of Y regardless of whether Y is observed or not, is the most difficult type of nonresponse to handle. The population mean estimators ignoring the nonrespondents typically have heavy biases. This paper studies an empi...

متن کامل

A sample selection model for unit and item nonresponse in cross-sectional surveys∗

We consider a general sample selection model where unit and item nonresponse simultaneously affect a regression relationship of interest, and both types of nonresponse are potentially correlated. We estimate both parametric and semiparametric specifications of the model. The parametric specification assumes that the errors in the latent regression equations follow a trivariate Gaussian distribu...

متن کامل

Efficient Estimation of Population-Level Summaries in General Semiparametric Regression Models

This article considers a wide class of semiparametric regression models in which interest focuses on population-level quantities that combine both the parametric and the nonparametric parts of the model. Special cases in this approach include generalized partially linear models, generalized partially linear single-index models, structural measurement error models, and many others. For estimatin...

متن کامل

Estimating Variance of the Sample Mean in Two-phase Sampling with Unit Non-response Effect

In sample surveys, we always deal with two types of errors: Sampling error and non-sampling error. One of the most common non-sampling errors is nonresponse. This error happens when some sample units are not observed or viewed but they do not answer some of the questions. The complete prevention of this error is not possible, but it can be significantly reduced. The non-response causes bias and ...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrics

دوره 63 4  شماره 

صفحات  -

تاریخ انتشار 2007